[Submitted on 27 Jun 2025]
View a PDF of the paper titled A Practical Approach to Power Saving in Hearables Using Sub-Nyquist Sampling with Bandwidth Extension, by Tarikul Islam Tamiti and Anomadarshi Barua
View PDF
HTML (experimental)
Abstract:Hearables are wearable computers that are worn on the ear. Bone conduction microphones (BCMs) are used with air conduction microphones (ACMs) in hearables as a supporting modality for multimodal speech enhancement (SE) in noisy conditions. However, existing works don’t consider the following practical aspects for low-power implementations on hearables: (i) They do not explore how lowering the sampling frequencies and bit resolutions in analog-to-digital converters (ADCs) of hearables jointly impact low-power processing and multimodal SE in terms of speech quality and intelligibility. (ii) They don’t discuss how GAN-like audio quality can be achieved without using actual GAN discriminators. And (iii) They don’t process signals from ACMs/BCMs at sub-Nyquist sampling rate because, in their frameworks, they lack a wideband reconstruction methodology from their narrowband parts. We propose SUBARU (\textbf{Sub}-Nyquist \textbf{A}udio \textbf{R}esolution \textbf{U}psampling), which achieves the following: SUBARU (i) intentionally uses sub-Nyquist sampling and low bit resolution in ADCs, achieving a 3.31x reduction in power consumption; (ii) introduces novel multi-scale and multi-period virtual discriminators, which achieve GAN-like audio quality without using GANs’ adversarial training; and (iii) achieves streaming operations on mobile platforms and SE in in-the-wild noisy conditions with an inference time of 1.74ms and a memory footprint of less than 13.77MB.
Submission history
From: Anomadarshi Barua [view email]
[v1]
Fri, 27 Jun 2025 15:35:04 UTC (2,923 KB)