Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Alibaba unveils latest AI service for images in push for users

Exclusive: Anthropic Let Claude Run a Shop. Things Got Weird

Public needs more details on OpenAI restructure proposal – Capitol Weekly | Capitol Weekly

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Amazon (Titan)
    • Anthropic (Claude 3)
    • Cohere (Command R)
    • Google DeepMind (Gemini)
    • IBM (Watsonx)
    • Inflection AI (Pi)
    • Meta (LLaMA)
    • OpenAI (GPT-4 / GPT-4o)
    • Reka AI
    • xAI (Grok)
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Facebook X (Twitter) Instagram
Advanced AI News
VentureBeat AI

Lessons learned from agentic AI leaders reveal critical deployment strategies for enterprises

Advanced AI EditorBy Advanced AI EditorJune 27, 2025No Comments5 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Join the event trusted by enterprise leaders for nearly two decades. VB Transform brings together the people building real enterprise AI strategy. Learn more

Companies are rushing AI agents into production — and many of them will fail. But the reason has nothing to do with their AI models.

On day two of VB Transform 2025, industry leaders shared hard-won lessons from deploying AI agents at scale. A panel moderated by Joanne Chen, general partner at Foundation Capital, included Shawn Malhotra, CTO at Rocket Companies, which uses agents across the home ownership journey from mortgage underwriting to customer chat; Shailesh Nalawadi, head of product at Sendbird, which builds agentic customer service experiences for companies across multiple verticals; and Thys Waanders, SVP of AI transformation at Cognigy, whose platform automates customer experiences for large enterprise contact centers.

Their shared discovery: Companies that build evaluation and orchestration infrastructure first are successful, while those rushing to production with powerful models fail at scale.

>>See all our Transform 2025 coverage here<<

The ROI reality: Beyond simple cost cutting

A key part of engineering AI agent for success is understanding the return on investment (ROI). Early AI agent deployments focused on cost reduction. While that remains a key component, enterprise leaders now report more complex ROI patterns that demand different technical architectures.

Cost reduction wins

Malhotra shared the most dramatic cost example from Rocket Companies. “We had an engineer [who] in about two days of work was able to build a simple agent to handle a very niche problem called ‘transfer tax calculations’ in the mortgage underwriting part of the process. And that two days of effort saved us a million dollars a year in expense,” he said.

For Cognigy, Waanders noted that cost per call is a key metric. He said that if AI agents are used to automate parts of those calls, it’s possible to reduce the average handling time per call.

Revenue generation methods

Saving is one thing; making more revenue is another. Malhotra reported that his team has seen conversion improvements: As clients get the answers to their questions faster and have a good experience, they are converting at higher rates.

Proactive revenue opportunities

Nalawadi highlighted entirely new revenue capabilities through proactive outreach. His team enables proactive customer service, reaching out before customers even realize they have a problem.

A food delivery example illustrates this perfectly. “They already know when an order is going to be late, and rather than waiting for the customer to get upset and call them, they realize that there was an opportunity to get ahead of it,” he said.

Why AI agents break in production

While there are solid ROI opportunities for enterprises that deploy agentic AI, there are also some challenges in production deployments.

Nalawadi identified the core technical failure: Companies build AI agents without evaluation infrastructure.

“Before you even start building it, you should have an eval infrastructure in place,” Nalawadi said. “All of us used to be software engineers. No one deploys to production without running unit tests. And I think a very simplistic way of thinking about eval is that it’s the unit test for your AI agent system.”

Traditional software testing approaches don’t work for AI agents. He noted that it’s just not possible to  predict every possible input or write comprehensive test cases for natural language interactions. Nalawadi’s team learned this through customer service deployments across retail, food delivery and financial services. Standard quality assurance approaches missed edge cases that emerged in production.

AI testing AI: The new quality assurance paradigm

Given the complexity of AI testing, what should organizations do? Waanders solved the testing problem through simulation.

“We have a feature that we’re releasing soon that is about simulating potential conversations,” Waanders explained. “So it’s essentially AI agents testing AI agents.”

The testing isn’t just conversation quality testing, it’s behavioral analysis at scale. Can it help to understand how an agent responds to angry customers? How does it handle multiple languages? What happens when customers use slang?

“The biggest challenge is you don’t know what you don’t know,” Waanders said. “How does it react to anything that anyone could come up with? You only find it out by simulating conversations, by really pushing it under thousands of different scenarios.”

The approach tests demographic variations, emotional states and edge cases that human QA teams can’t cover comprehensively.

The coming complexity explosion

Current AI agents handle single tasks independently. Enterprise leaders need to prepare for a different reality: Hundreds of agents per organization learning from each other.

The infrastructure implications are massive. When agents share data and collaborate, failure modes multiply exponentially. Traditional monitoring systems can’t track these interactions.

Companies must architect for this complexity now. Retrofitting infrastructure for multi-agent systems costs significantly more than building it correctly from the start.

“If you fast forward in what’s theoretically possible, there could be hundreds of them in an organization, and perhaps they are learning from each other,”Chen said. “The number of things that could happen just explodes. The complexity explodes.”

Daily insights on business use cases with VB Daily

If you want to impress your boss, VB Daily has you covered. We give you the inside scoop on what companies are doing with generative AI, from regulatory shifts to practical deployments, so you can share insights for maximum ROI.

Read our Privacy Policy

Thanks for subscribing. Check out more VB newsletters here.

An error occured.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleGoogle unveils Gemini CLI, an open source AI tool for terminals
Next Article Up to 300 S’pore firms stand to get cloud credits, grants to spur AI trials under new programme
Advanced AI Editor
  • Website

Related Posts

Get paid faster: How Intuit’s new AI agents help businesses get funds up to 5 days faster and save 12 hours a month with autonomous workflows

June 27, 2025

What enterprise leaders can learn from LinkedIn’s success with AI agents

June 27, 2025

Walmart’s Enterprise AI Blueprint: Trust Engineering at Scale

June 27, 2025
Leave A Reply Cancel Reply

Latest Posts

At Proper Hotels, Come For Vacation, Stay For The Live Music

New EU Law Aimed at Art Trafficking Goes Into Effect on June 28

Peek Inside ‘Leading Hotels Of The World’ With Luxe Travel Book ‘Culture’

Marcia Resnick, Photographer of Downtown Manhattan Scene, Dies at 74

Latest Posts

Alibaba unveils latest AI service for images in push for users

June 27, 2025

Exclusive: Anthropic Let Claude Run a Shop. Things Got Weird

June 27, 2025

Public needs more details on OpenAI restructure proposal – Capitol Weekly | Capitol Weekly

June 27, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Alibaba unveils latest AI service for images in push for users
  • Exclusive: Anthropic Let Claude Run a Shop. Things Got Weird
  • Public needs more details on OpenAI restructure proposal – Capitol Weekly | Capitol Weekly
  • Active Inference AI Systems for Scientific Discovery
  • Big Tech lands an early win in legal battles against publishers

Recent Comments

No comments to show.

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.