arXiv:2506.17484v1 Announce Type: new
Abstract: Supply chain operations generate vast amounts of operational data; however, critical knowledge such as system usage practices, troubleshooting workflows, and resolution techniques often remains buried within unstructured communications like support tickets, emails, and chat logs. While RAG systems aim to leverage such communications as a knowledge base, their effectiveness is limited by raw data challenges: support tickets are typically noisy, inconsistent, and incomplete, making direct retrieval suboptimal. Unlike existing RAG approaches that focus on runtime optimization, we introduce a novel offline-first methodology that transforms these communications into a structured knowledge base. Our key innovation is a LLMs-based multi-agent system orchestrating three specialized agents: Category Discovery for taxonomy creation, Categorization for ticket grouping, and Knowledge Synthesis for article generation. Applying our methodology to real-world support tickets with resolution notes and comments, our system creates a compact knowledge base – reducing total volume to just 3.4% of original ticket data while improving quality. Experiments demonstrate that our prebuilt knowledge base in RAG systems significantly outperforms traditional RAG implementations (48.74% vs. 38.60% helpful answers) and achieves a 77.4% reduction in unhelpful responses. By automating institutional knowledge capture that typically remains siloed in experts’ heads, our solution translates to substantial operational efficiency: reducing support workload, accelerating resolution times, and creating self-improving systems that automatically resolve approximately 50% of future supply chain tickets. Our approach addresses a key gap in knowledge management by transforming transient communications into structured, reusable knowledge through intelligent offline processing rather than latency-inducing runtime architectures.
Source link
From Unstructured Communication to Intelligent RAG: Multi-Agent Automation for Supply Chain Knowledge Bases
Previous ArticleMIT cinches deal with lender to borrow up to $500 million