LVLMs inherited LLMs architectural designs, which introduce suboptimal characteristics for multimodal processing. First, LVLMs exhibit a bimodal distribution in attention allocation, leading to the progressive neglect of central visual content as context expands. Second, conventional positional encoding schemes fail to preserve vital 2D structural relationships when processing dynamic high-resolution images.
To address these issues, we propose CoMemo, a novel model architecture. CoMemo employs a dual-path approach for visual processing: one path maps image tokens to the text token representation space for causal self-attention, while the other introduces cross-attention, enabling context-agnostic computation between the input sequence and image information. Additionally, we developed RoPE-DHR, a new positional encoding method tailored for LVLMs with dynamic high-resolution inputs. RoPE-DHR mitigates the remote decay problem caused by dynamic high-resolution inputs while preserving the 2D structural information of images.
Evaluated on seven diverse tasks, including long-context understanding, multi-image reasoning, and visual question answering, CoMemo achieves relative improvements of 17.2%, 7.0%, and 5.6% on Caption, Long-Generation, and Long-Context tasks, respectively, with consistent performance gains across various benchmarks. For more details, please refer to our paper and GitHub.