Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

[2502.21266] Supporting the development of Machine Learning for fundamental science in a federated Cloud with the AI_INFN platform

Stanford HAI’s annual report highlights rapid adoption and growing accessibility of powerful AI systems

New MIT CSAIL study suggests that AI won’t steal as many jobs as expected

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Facebook X (Twitter) Instagram
Advanced AI News
Home » Paper page – Truncated Proximal Policy Optimization
Hugging Face

Paper page – Truncated Proximal Policy Optimization

Advanced AI BotBy Advanced AI BotJune 19, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


T-PPO, an extension of PPO, improves training efficiency for Large Language Models by optimizing policy updates and utilizing hardware resources more effectively.

Recently, test-time scaling Large Language Models (LLMs) have demonstrated
exceptional reasoning capabilities across scientific and professional tasks by
generating long chains-of-thought (CoT). As a crucial component for developing
these reasoning models, reinforcement learning (RL), exemplified by Proximal
Policy Optimization (PPO) and its variants, allows models to learn through
trial and error. However, PPO can be time-consuming due to its inherent
on-policy nature, which is further exacerbated by increasing response lengths.
In this work, we propose Truncated Proximal Policy Optimization (T-PPO), a
novel extension to PPO that improves training efficiency by streamlining policy
update and length-restricted response generation. T-PPO mitigates the issue of
low hardware utilization, an inherent drawback of fully synchronized
long-generation procedures, where resources often sit idle during the waiting
periods for complete rollouts. Our contributions are two-folds. First, we
propose Extended Generalized Advantage Estimation (EGAE) for advantage
estimation derived from incomplete responses while maintaining the integrity of
policy learning. Second, we devise a computationally optimized mechanism that
allows for the independent optimization of the policy and value models. By
selectively filtering prompt and truncated tokens, this mechanism reduces
redundant computations and accelerates the training process without sacrificing
convergence performance. We demonstrate the effectiveness and efficacy of T-PPO
on AIME 2024 with a 32B base model. The experimental results show that T-PPO
improves the training efficiency of reasoning LLMs by up to 2.5x and
outperforms its existing competitors.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleArtificial intelligence risks are growing
Next Article Nvidia H20 chip exports hit with license requirement by US government
Advanced AI Bot
  • Website

Related Posts

Paper page – SciVer: Evaluating Foundation Models for Multimodal Scientific Claim Verification

June 19, 2025

Paper page – Semantically-Aware Rewards for Open-Ended R1 Training in Free-Form Generation

June 19, 2025

Paper page – CoMemo: LVLMs Need Image Context with Image Memory

June 19, 2025
Leave A Reply Cancel Reply

Latest Posts

Basel Social Club Turns a Swiss Bank Into a Wild Art Show

Beatie Wolfe Talks About Working With Brian Eno On Their Two Collaborative Albums

Broadway’s Billion-Dollar Tony Night

Bailey House Honors Queer, Black Artist Derrick Adams; Benefit Raises Over $200,000 For New Yorkers Living With HIV/AIDS, Chronic Illnesses

Latest Posts

[2502.21266] Supporting the development of Machine Learning for fundamental science in a federated Cloud with the AI_INFN platform

June 19, 2025

Stanford HAI’s annual report highlights rapid adoption and growing accessibility of powerful AI systems

June 19, 2025

New MIT CSAIL study suggests that AI won’t steal as many jobs as expected

June 19, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.