PATS is a novel temporal sampling method that enhances video analysis of athletic skills by ensuring complete movement patterns are captured, outperforming existing methods across various domains.
Automated sports skill assessment requires capturing fundamental movement
patterns that distinguish expert from novice performance, yet current video
sampling methods disrupt the temporal continuity essential for proficiency
evaluation. To this end, we introduce Proficiency-Aware Temporal Sampling
(PATS), a novel sampling strategy that preserves complete fundamental movements
within continuous temporal segments for multi-view skill assessment. PATS
adaptively segments videos to ensure each analyzed portion contains full
execution of critical performance components, repeating this process across
multiple segments to maximize information coverage while maintaining temporal
coherence. Evaluated on the EgoExo4D benchmark with SkillFormer, PATS surpasses
the state-of-the-art accuracy across all viewing configurations (+0.65% to
+3.05%) and delivers substantial gains in challenging domains (+26.22%
bouldering, +2.39% music, +1.13% basketball). Systematic analysis reveals that
PATS successfully adapts to diverse activity characteristics-from
high-frequency sampling for dynamic sports to fine-grained segmentation for
sequential skills-demonstrating its effectiveness as an adaptive approach to
temporal sampling that advances automated skill assessment for real-world
applications.