High-quality datasets are fundamental to training and evaluating machine
learning models, yet their creation-especially with accurate human
annotations-remains a significant challenge. Many dataset paper submissions
lack originality, diversity, or rigorous quality control, and these
shortcomings are often overlooked during peer review. Submissions also
frequently omit essential details about dataset construction and properties.
While existing tools such as datasheets aim to promote transparency, they are
largely descriptive and do not provide standardized, measurable methods for
evaluating data quality. Similarly, metadata requirements at conferences
promote accountability but are inconsistently enforced. To address these
limitations, this position paper advocates for the integration of systematic,
rubric-based evaluation metrics into the dataset review process-particularly as
submission volumes continue to grow. We also explore scalable, cost-effective
methods for synthetic data generation, including dedicated tools and
LLM-as-a-judge approaches, to support more efficient evaluation. As a call to
action, we introduce DataRubrics, a structured framework for assessing the
quality of both human- and model-generated datasets. Leveraging recent advances
in LLM-based evaluation, DataRubrics offers a reproducible, scalable, and
actionable solution for dataset quality assessment, enabling both authors and
reviewers to uphold higher standards in data-centric research. We also release
code to support reproducibility of LLM-based evaluations at
https://github.com/datarubrics/datarubrics.