Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Hybrid Reinforcement: When Reward Is Sparse, It’s Better to Be Dense – Takara TLDR

GyroSwin: 5D Surrogates for Gyrokinetic Plasma Turbulence Simulations – Takara TLDR

OpenAI Will Stop Saving Users’ Deleted Posts

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
arXiv AI

Reinforcement Speculative Decoding for Fast Ranking

By Advanced AI EditorMay 29, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email



arXiv:2505.20316v1 Announce Type: new
Abstract: Large Language Models (LLMs) have been widely adopted in ranking systems such as information retrieval (IR) systems and recommender systems (RSs). To alleviate the latency of auto-regressive decoding, some studies explore the single (first) token decoding for ranking approximation, but they suffer from severe degradation in tail positions. Although speculative decoding (SD) methods can be a remedy with verification at different positions, they face challenges in ranking systems due to their left-to-right decoding paradigm. Firstly, ranking systems require strict latency constraints, but verification rounds in SD methods remain agnostic; Secondly, SD methods usually discard listwise ranking knowledge about unaccepted items in previous rounds, hindering future multi-token prediction, especially when candidate tokens are the unaccepted items. In this paper, we propose a Reinforcement Speculative Decoding method for fast ranking inference of LLMs. To meet the ranking systems’ latency requirement, we propose an up-to-down decoding paradigm that employs an agent to iteratively modify the ranking sequence under a constrained budget. Specifically, we design a ranking-tailored policy optimization, actively exploring optimal multi-round ranking modification policy verified by LLMs via reinforcement learning (RL). To better approximate the target LLM under the constrained budget, we trigger the agent fully utilizing the listwise ranking knowledge about all items verified by LLMs across different rounds in RL, enhancing the modification policy of the agent. More importantly, we demonstrate the theoretical robustness and advantages of our paradigm and implementation. Experiments on both IR and RS tasks show the effectiveness of our proposed method.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleStanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation
Next Article The Download: The story of OpenAI, and making magnesium
Advanced AI Editor
  • Website

Related Posts

LTLCrit: A Temporal Logic-based LLM Critic for Safe and Efficient Embodied Agents

July 8, 2025

From Imitation to Innovation: The Emergence of AI Unique Artistic Styles and the Challenge of Copyright Protection

July 8, 2025

VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots

July 8, 2025
Leave A Reply

Latest Posts

Smithsonian Closes Museums Amid Government Shutdown

The Rubin Names 2025 Art Prize, Research and Art Projects Grants

Kochi-Muziris Biennial Announces 66 Artists for December Exhibition

Instagram Launches ‘Rings’ Awards for Creators—With KAWS as a Judge

Latest Posts

Hybrid Reinforcement: When Reward Is Sparse, It’s Better to Be Dense – Takara TLDR

October 13, 2025

GyroSwin: 5D Surrogates for Gyrokinetic Plasma Turbulence Simulations – Takara TLDR

October 13, 2025

OpenAI Will Stop Saving Users’ Deleted Posts

October 13, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Hybrid Reinforcement: When Reward Is Sparse, It’s Better to Be Dense – Takara TLDR
  • GyroSwin: 5D Surrogates for Gyrokinetic Plasma Turbulence Simulations – Takara TLDR
  • OpenAI Will Stop Saving Users’ Deleted Posts
  • Learning to Route LLMs from Bandit Feedback: One Policy, Many Trade-offs – Takara TLDR
  • Reflection AI lands $2B at $8B valuation to expand frontier AI infrastructure and safety research

Recent Comments

  1. Renged on Cisco automates AI-driven security across enterprise networks
  2. Vytvorit osobní úcet on Why top researchers are being courted like celebrities
  3. TribalMaskU9Nalay on United States, China, and United Kingdom Lead the Global AI Ranking According to Stanford HAI’s Global AI Vibrancy Tool
  4. Rocky Bagdasarian on Point and Learn Spanish with GPT-4o
  5. E2BET 대한민국 on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.