Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

IBM vs. QCOM: Which Tech Stock Deserves a Spot in Your Portfolio Now? – September 9, 2025

Interleaving Reasoning for Better Text-to-Image Generation – Takara TLDR

Powering innovation at scale: How AWS is tackling AI infrastructure challenges

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Hugging Face

Paper page – Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models

By Advanced AI EditorMay 25, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


TON, a two-stage training strategy combining supervised fine-tuning with thought dropout and Group Relative Policy Optimization, reduces unnecessary reasoning steps in vision-language models without sacrificing performance.

Reinforcement Learning (RL) has proven to be an effective post-training
strategy for enhancing reasoning in vision-language models (VLMs). Group
Relative Policy Optimization (GRPO) is a recent prominent method that
encourages models to generate complete reasoning traces before answering,
leading to increased token usage and computational cost. Inspired by the
human-like thinking process-where people skip reasoning for easy questions but
think carefully when needed-we explore how to enable VLMs to first decide when
reasoning is necessary. To realize this, we propose TON, a two-stage training
strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective
‘thought dropout’ operation, where reasoning traces are randomly replaced with
empty thoughts. This introduces a think-or-not format that serves as a cold
start for selective reasoning; (ii) a GRPO stage that enables the model to
freely explore when to think or not, while maximizing task-aware outcome
rewards. Experimental results show that TON can reduce the completion length by
up to 90% compared to vanilla GRPO, without sacrificing performance or even
improving it. Further evaluations across diverse vision-language tasks-covering
a range of reasoning difficulties under both 3B and 7B models-consistently
reveal that the model progressively learns to bypass unnecessary reasoning
steps as training advances. These findings shed light on the path toward
human-like reasoning patterns in reinforcement learning approaches. Our code is
available at https://github.com/kokolerk/TON.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleStability AI & Arm Launch On-Device, Royalty-Free Text to Audio AI Model
Next Article Nvidia CEO Jensen Huang calls US ban on H20 AI chip ‘deeply painful’
Advanced AI Editor
  • Website

Related Posts

Interleaving Reasoning for Better Text-to-Image Generation – Takara TLDR

September 9, 2025

R^textbf{2AI}: Towards Resistant and Resilient AI in an Evolving World – Takara TLDR

September 9, 2025

Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents – Takara TLDR

September 9, 2025
Leave A Reply

Latest Posts

Anne Imhof Reimagines Football Jerseys with Nike

Storied Collector and MoMA Trustee Dies at 92

Congress Obtains Drawing Trump Apparently Made for Jeffrey Epstein

Galerie Gmurzynska Slated to Open in New York’s Fuller Building

Latest Posts

IBM vs. QCOM: Which Tech Stock Deserves a Spot in Your Portfolio Now? – September 9, 2025

September 9, 2025

Interleaving Reasoning for Better Text-to-Image Generation – Takara TLDR

September 9, 2025

Powering innovation at scale: How AWS is tackling AI infrastructure challenges

September 9, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • IBM vs. QCOM: Which Tech Stock Deserves a Spot in Your Portfolio Now? – September 9, 2025
  • Interleaving Reasoning for Better Text-to-Image Generation – Takara TLDR
  • Powering innovation at scale: How AWS is tackling AI infrastructure challenges
  • Mistral AI, Backed by NVIDIA, Raises $2 Billion at $14 Billion Valuation
  • MIT Sloan Management Review Research Points to New R&D Framework in Light of Restrictive Immigration Policies

Recent Comments

  1. RonnieUnogy on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. Guvekfug on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. Pearline on Melissa Errico To Sing Stephen Sondheim Classics In NY And London
  4. AllenRow on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  5. نظرات دانشجویان پزشکی تعهدی on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.