Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

MILP-SAT-GNN: Yet Another Neural SAT Solver

MIT student builds pocket-sized 3D printer that uses light to create objects in secs

Awesome Research For Everyone! – Two Minute Papers Channel Trailer

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Amazon (Titan)
    • Anthropic (Claude 3)
    • Cohere (Command R)
    • Google DeepMind (Gemini)
    • IBM (Watsonx)
    • Inflection AI (Pi)
    • Meta (LLaMA)
    • OpenAI (GPT-4 / GPT-4o)
    • Reka AI
    • xAI (Grok)
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Facebook X (Twitter) Instagram
Advanced AI News
Hugging Face

Paper page – Parallel Scaling Law for Language Models

Advanced AI EditorBy Advanced AI EditorMay 17, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


It is commonly believed that scaling language models should commit a
significant space or time cost, by increasing the parameters (parameter
scaling) or output tokens (inference-time scaling). We introduce the third and
more inference-efficient scaling paradigm: increasing the model’s parallel
computation during both training and inference time. We apply P diverse and
learnable transformations to the input, execute forward passes of the model in
parallel, and dynamically aggregate the P outputs. This method, namely
parallel scaling (ParScale), scales parallel computation by reusing existing
parameters and can be applied to any model structure, optimization procedure,
data, or task. We theoretically propose a new scaling law and validate it
through large-scale pre-training, which shows that a model with P parallel
streams is similar to scaling the parameters by O(log P) while showing
superior inference efficiency. For example, ParScale can use up to 22times
less memory increase and 6times less latency increase compared to parameter
scaling that achieves the same performance improvement. It can also recycle an
off-the-shelf pre-trained model into a parallelly scaled one by post-training
on a small amount of tokens, further reducing the training budget. The new
scaling law we discovered potentially facilitates the deployment of more
powerful models in low-resource scenarios, and provides an alternative
perspective for the role of computation in machine learning.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleStability AI and Arm Release Lightweight Tex-to-Audio Model Optimised for Fast On-Device Generation
Next Article Nvidia to Launch Downgraded H20 AI Chip in China after US Export Curbs – Space/Science news
Advanced AI Editor
  • Website

Related Posts

Paper page – JAM-Flow: Joint Audio-Motion Synthesis with Flow Matching

July 3, 2025

Paper page – Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact

July 2, 2025

Paper page – Radial Attention: O(nlog n) Sparse Attention with Energy Decay for Long Video Generation

July 2, 2025
Leave A Reply Cancel Reply

Latest Posts

Khaled Sabsabi Reinstated as Australia’s Venice Biennale Artist

Peter Phillips, British Pop Art Originator, Dies at 86

Hundreds of Ancient Ceramics Found In Preserved Shipwreck in Turkey

Canaletto Auction Record Smashed at Christie’s London

Latest Posts

MILP-SAT-GNN: Yet Another Neural SAT Solver

July 3, 2025

MIT student builds pocket-sized 3D printer that uses light to create objects in secs

July 3, 2025

Awesome Research For Everyone! – Two Minute Papers Channel Trailer

July 3, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • MILP-SAT-GNN: Yet Another Neural SAT Solver
  • MIT student builds pocket-sized 3D printer that uses light to create objects in secs
  • Awesome Research For Everyone! – Two Minute Papers Channel Trailer
  • understanding AI’s impact on content providers
  • Tencent And Alibaba’s New (And Faster) Models

Recent Comments

No comments to show.

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.