Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

China’s Zhipu eyes expansion via Belt and Road Initiative as global AI market heats up

PwC + Integreon Partner For AI-Powered ALSP Move – Artificial Lawyer

1 Surging Stock with Promising Prospects and 2 to Keep Off Your Radar

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » Linformer: Self-Attention with Linear Complexity (Paper Explained)
Yannic Kilcher

Linformer: Self-Attention with Linear Complexity (Paper Explained)

Advanced AI BotBy Advanced AI BotMay 13, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email



Transformers are notoriously resource-intensive because their self-attention mechanism requires a squared number of memory and computations in the length of the input sequence. The Linformer Model gets around that by using the fact that often, the actual information in the attention matrix is of lower rank and can be approximated.

OUTLINE:
0:00 – Intro & Overview
1:40 – The Complexity of Self-Attention
4:50 – Embedding Dimension & Multiple Heads
8:45 – Formal Attention
10:30 – Empirical Investigation into RoBERTa
20:00 – Theorem: Self-Attention is Low Rank
28:10 – Linear Self-Attention Method
36:15 – Theorem: Linear Self-Attention
44:10 – Language Modeling
46:40 – NLP Benchmarks
47:50 – Compute Time & Memory Gains
48:20 – Broader Impact Statement
49:55 – Conclusion

Paper:

Abstract:
Large transformer models have shown extraordinary success in achieving state-of-the-art results in many natural language processing applications. However, training and deploying these models can be prohibitively costly for long sequences, as the standard self-attention mechanism of the Transformer uses O(n2) time and space with respect to sequence length. In this paper, we demonstrate that the self-attention mechanism can be approximated by a low-rank matrix. We further exploit this finding to propose a new self-attention mechanism, which reduces the overall self-attention complexity from O(n2) to O(n) in both time and space. The resulting linear transformer, the textit{Linformer}, performs on par with standard Transformer models, while being much more memory- and time-efficient.

Authors: Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma

Links:
YouTube:
Twitter:
Discord:
BitChute:
Minds:

source

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleCan An AI Design A Good Game Level? 🤖
Next Article Attend TechCrunch Sessions: AI with this new, limited-time discount
Advanced AI Bot
  • Website

Related Posts

Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search (Paper Explained)

May 14, 2025

BLEURT: Learning Robust Metrics for Text Generation (Paper Explained)

May 14, 2025

JOIN ME for the NeurIPS 2020 Flatland Multi-Agent RL Challenge!

May 14, 2025
Leave A Reply Cancel Reply

Latest Posts

Phillips Evening Sale Sees 40 Percent Drop from 2024

The Artisans At Altitude In The Peruvian Andes

5 London Exhibitions To See This Summer At National Gallery, The Wallace Collection, British Museum, Sketch & Camden Arts Projects

‘Noguchi At Night’ Draws Together Groundbreaking Sculpture, Dance, And Culinary Excellence With Pop-Up Performances By Martha Graham Dance Company

Latest Posts

China’s Zhipu eyes expansion via Belt and Road Initiative as global AI market heats up

May 14, 2025

PwC + Integreon Partner For AI-Powered ALSP Move – Artificial Lawyer

May 14, 2025

1 Surging Stock with Promising Prospects and 2 to Keep Off Your Radar

May 14, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.