Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

New Google Gemma open AI models launched

An Engineer’s Diary Reveals the Human Cost of Building OpenAI’s Next Big Thing

Unstructured data becomes AI-ready: Companies reshape enterprise platforms

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
arXiv AI

[2505.05880] Combining Abstract Argumentation and Machine Learning for Efficiently Analyzing Low-Level Process Event Streams

By Advanced AI EditorMay 12, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


[Submitted on 9 May 2025]

View a PDF of the paper titled Combining Abstract Argumentation and Machine Learning for Efficiently Analyzing Low-Level Process Event Streams, by Bettina Fazzinga and 4 other authors

View PDF
HTML (experimental)

Abstract:Monitoring and analyzing process traces is a critical task for modern companies and organizations. In scenarios where there is a gap between trace events and reference business activities, this entails an interpretation problem, amounting to translating each event of any ongoing trace into the corresponding step of the activity instance. Building on a recent approach that frames the interpretation problem as an acceptance problem within an Abstract Argumentation Framework (AAF), one can elegantly analyze plausible event interpretations (possibly in an aggregated form), as well as offer explanations for those that conflict with prior process knowledge. Since, in settings where event-to-activity mapping is highly uncertain (or simply under-specified) this reasoning-based approach may yield lowly-informative results and heavy computation, one can think of discovering a sequencetagging model, trained to suggest highly-probable candidate event interpretations in a context-aware way. However, training such a model optimally may require using a large amount of manually-annotated example traces. Considering the urgent need of developing Green AI solutions enabling environmental and societal sustainability (with reduced labor/computational costs and carbon footprint), we propose a data/computation-efficient neuro-symbolic approach to the problem, where the candidate interpretations returned by the example-driven sequence tagger is refined by the AAF-based reasoner. This allows us to also leverage prior knowledge to compensate for the scarcity of example data, as confirmed by experimental results; clearly, this property is particularly useful in settings where data annotation and model optimization costs are subject to stringent constraints.

Submission history

From: Francesco Scala PhD [view email]
[v1]
Fri, 9 May 2025 08:45:07 UTC (1,742 KB)



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleStanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation
Next Article Microsoft and OpenAI may be renegotiating their partnership
Advanced AI Editor
  • Website

Related Posts

LTLCrit: A Temporal Logic-based LLM Critic for Safe and Efficient Embodied Agents

July 8, 2025

From Imitation to Innovation: The Emergence of AI Unique Artistic Styles and the Challenge of Copyright Protection

July 8, 2025

VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots

July 8, 2025
Leave A Reply

Latest Posts

Yale Art Gallery Rejects Federal Grants for Africa Migration Show

Chanel Will Return to New York City with Métiers d’Art Collection

Rashid Johnson Painting Spotted in Trump Official’s Home

Christie’s Reports $2.1 B. Sales Total for H1 2024

Latest Posts

New Google Gemma open AI models launched

July 17, 2025

An Engineer’s Diary Reveals the Human Cost of Building OpenAI’s Next Big Thing

July 17, 2025

Unstructured data becomes AI-ready: Companies reshape enterprise platforms

July 17, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • New Google Gemma open AI models launched
  • An Engineer’s Diary Reveals the Human Cost of Building OpenAI’s Next Big Thing
  • Unstructured data becomes AI-ready: Companies reshape enterprise platforms
  • Mistral’s Le Chat adds deep research agent and voice mode to challenge OpenAI’s enterprise dominance
  • Anthropic tightens usage limits for Claude Code – without telling users

Recent Comments

  1. melhor código de indicac~ao binance on Google DeepMind develops AlphaEvolve AI agent optimized for coding and math
  2. aviator official website on Former Tesla AI czar Andrej Karpathy coins ‘vibe coding’: Here’s what it means
  3. BitStarz on Former Tesla AI czar Andrej Karpathy coins ‘vibe coding’: Here’s what it means
  4. bit starz best game on Former Tesla AI czar Andrej Karpathy coins ‘vibe coding’: Here’s what it means
  5. binance referral on Qwen 2.5 Coder and Qwen 3 Lead in Open Source LLM Over DeepSeek and Meta

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.