Reinforcement learning with verifiable rewards (RLVR) has shown promise in
enhancing the reasoning capabilities of large language models by learning
directly from outcome-based rewards. Recent RLVR works that operate under the
zero setting avoid supervision in labeling the reasoning process, but still
depend on manually curated collections of questions and answers for training.
The scarcity of high-quality, human-produced examples raises concerns about the
long-term scalability of relying on human supervision, a challenge already
evident in the domain of language model pretraining. Furthermore, in a
hypothetical future where AI surpasses human intelligence, tasks provided by
humans may offer limited learning potential for a superintelligent system. To
address these concerns, we propose a new RLVR paradigm called Absolute Zero, in
which a single model learns to propose tasks that maximize its own learning
progress and improves reasoning by solving them, without relying on any
external data. Under this paradigm, we introduce the Absolute Zero Reasoner
(AZR), a system that self-evolves its training curriculum and reasoning ability
by using a code executor to both validate proposed code reasoning tasks and
verify answers, serving as an unified source of verifiable reward to guide
open-ended yet grounded learning. Despite being trained entirely without
external data, AZR achieves overall SOTA performance on coding and mathematical
reasoning tasks, outperforming existing zero-setting models that rely on tens
of thousands of in-domain human-curated examples. Furthermore, we demonstrate
that AZR can be effectively applied across different model scales and is
compatible with various model classes.