Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Employee Layoffs Impact Companies | Recruiting News Network

Perplexity AI Unveils $42.5M Publisher Payout Amid Lawsuits and $34.5B Chrome Bid

CRISP: Persistent Concept Unlearning via Sparse Autoencoders – Takara TLDR

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Yannic Kilcher

Rethinking Attention with Performers (Paper Explained)

By Advanced AI EditorMay 7, 2025No Comments3 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email



#ai #research #attention

Transformers have huge memory and compute requirements because they construct an Attention matrix, which grows quadratically in the size of the input. The Performer is a model that uses random positive orthogonal features to construct an unbiased estimator to the Attention matrix and obtains an arbitrarily good approximation in linear time! The method generalizes beyond attention and opens the door to the next generation of deep learning architectures.

OUTLINE:
0:00 – Intro & Outline
6:15 – Quadratic Bottleneck in Attention Mechanisms
10:00 – Decomposing the Attention Matrix
15:30 – Approximating the Softmax Kernel
24:45 – Different Choices, Different Kernels
28:00 – Why the Naive Approach does not work!
31:30 – Better Approximation via Positive Features
36:55 – Positive Features are Infinitely Better
40:10 – Orthogonal Features are Even Better
43:25 – Experiments
49:20 – Broader Impact Statement
50:00 – Causal Attention via Prefix Sums
52:10 – Code
53:50 – Final Remarks & Conclusion

Paper:
Code:
Blog:

Kernels on ML Street Talk:
My Video on Linformer:
My Video on Reformer:
My Video on Attention:

Abstract:
We introduce Performers, Transformer architectures which can estimate regular (softmax) full-rank-attention Transformers with provable accuracy, but using only linear (as opposed to quadratic) space and time complexity, without relying on any priors such as sparsity or low-rankness. To approximate softmax attention-kernels, Performers use a novel Fast Attention Via positive Orthogonal Random features approach (FAVOR+), which may be of independent interest for scalable kernel methods. FAVOR+ can be also used to efficiently model kernelizable attention mechanisms beyond softmax. This representational power is crucial to accurately compare softmax with other kernels for the first time on large-scale tasks, beyond the reach of regular Transformers, and investigate optimal attention-kernels. Performers are linear architectures fully compatible with regular Transformers and with strong theoretical guarantees: unbiased or nearly-unbiased estimation of the attention matrix, uniform convergence and low estimation variance. We tested Performers on a rich set of tasks stretching from pixel-prediction through text models to protein sequence modeling. We demonstrate competitive results with other examined efficient sparse and dense attention methods, showcasing effectiveness of the novel attention-learning paradigm leveraged by Performers.

Authors: Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, Adrian Weller

Links:
YouTube:
Twitter:
Discord:
BitChute:
Minds:
Parler:
LinkedIn:

If you want to support me, the best thing to do is to share out the content 🙂

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar:
Patreon:
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

source

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleThis AI Creates Beautiful Light Simulations! 🔆
Next Article OpenAI wants to team up with governments to grow AI infrastructure
Advanced AI Editor
  • Website

Related Posts

AGI is not coming!

August 9, 2025

Context Rot: How Increasing Input Tokens Impacts LLM Performance (Paper Analysis)

July 23, 2025

Energy-Based Transformers are Scalable Learners and Thinkers (Paper Review)

July 19, 2025
Leave A Reply

Latest Posts

Amy Sherald Speaks Out About Government Censorship at the Smithsonian

Dealers Living Like Collectors, Egypt’s Tourism and More: Morning Links

Mütter Museum in Philadelphia Announces New Policy for Human Remains

Inigo Philbrick, Art Dealer Convicted of Fraud, Appears in BBC Film

Latest Posts

Employee Layoffs Impact Companies | Recruiting News Network

August 25, 2025

Perplexity AI Unveils $42.5M Publisher Payout Amid Lawsuits and $34.5B Chrome Bid

August 25, 2025

CRISP: Persistent Concept Unlearning via Sparse Autoencoders – Takara TLDR

August 25, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Employee Layoffs Impact Companies | Recruiting News Network
  • Perplexity AI Unveils $42.5M Publisher Payout Amid Lawsuits and $34.5B Chrome Bid
  • CRISP: Persistent Concept Unlearning via Sparse Autoencoders – Takara TLDR
  • Musk’s xAI sues Apple, OpenAI alleging antitrust violations
  • Is Artificial Intelligence in danger? 95% projects fail; MIT report makes shocking revelation, it says…

Recent Comments

  1. مطالعه خلاصه کتاب on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  2. NathanInoca on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. Charliecep on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. MichaelEmisp on MIT’s Xstrings facilitates 3D printing parts with embedded actuation | VoxelMatters
  5. NathanInoca on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.