Can we build accurate world models out of large language models (LLMs)? How
can world models benefit LLM agents? The gap between the prior knowledge of
LLMs and the specified environment’s dynamics usually bottlenecks LLMs’
performance as world models. To bridge the gap, we propose a training-free
“world alignment” that learns an environment’s symbolic knowledge complementary
to LLMs. The symbolic knowledge covers action rules, knowledge graphs, and
scene graphs, which are extracted by LLMs from exploration trajectories and
encoded into executable codes to regulate LLM agents’ policies. We further
propose an RL-free, model-based agent “WALL-E 2.0” through the model-predictive
control (MPC) framework. Unlike classical MPC requiring costly optimization on
the fly, we adopt an LLM agent as an efficient look-ahead optimizer of future
steps’ actions by interacting with the neurosymbolic world model. While the LLM
agent’s strong heuristics make it an efficient planner in MPC, the quality of
its planned actions is also secured by the accurate predictions of the aligned
world model. They together considerably improve learning efficiency in a new
environment. On open-world challenges in Mars (Minecraft like) and ALFWorld
(embodied indoor environments), WALL-E 2.0 significantly outperforms existing
methods, e.g., surpassing baselines in Mars by 16.1%-51.6% of success rate and
by at least 61.7% in score. In ALFWorld, it achieves a new record 98% success
rate after only 4 iterations.