Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models – Takara TLDR

VOGUE: Guiding Exploration with Visual Uncertainty Improves Multimodal Reasoning – Takara TLDR

Thinking Machines debuts Tinker, a developer tool to simplify fine-tuning of AI models | Technology News

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Expert Blogs

Quantum hardware may be a good match for AI

By Advanced AI EditorApril 11, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Quantum computers don’t have that sort of separation. While they could include some quantum memory, the data is generally housed directly in the qubits, while computation involves performing operations, called gates, directly on the qubits themselves. In fact, there has been a demonstration that, for supervised machine learning, where a system can learn to classify items after training on pre-classified data, a quantum system can outperform classical ones, even when the data being processed is housed on classical hardware.

This form of machine learning relies on what are called variational quantum circuits. This is a two-qubit gate operation that takes an additional factor that can be held on the classical side of the hardware and imparted to the qubits via the control signals that trigger the gate operation. You can think of this as analogous to the communications involved in a neural network, with the two-qubit gate operation equivalent to the passing of information between two artificial neurons and the factor analogous to the weight given to the signal.

That’s exactly the system that a team from the Honda Research Institute worked on in collaboration with a quantum software company called Blue Qubit.

Pixels to qubits

The focus of the new work was mostly on how to get data from the classical world into the quantum system for characterization. But the researchers ended up testing the results on two different quantum processors.

The problem they were testing is one of image classification. The raw material was from the Honda Scenes dataset, which has images taken from roughly 80 hours of driving in Northern California; the images are tagged with information about what’s in the scene. And the question the researchers wanted the machine learning to handle was a simple one: Is it snowing in the scene?



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleFormer Google CEO suggests building data centers in remote locations in case of nation-state attacks to slow down AI
Next Article NVIDIA debuts GR00T N1 AI model for humanoid robots
Advanced AI Editor
  • Website

Related Posts

The Lean AI Lab’s Blueprint for Superhuman Productivity

October 5, 2025

Stocks to Gain From Quantum Computing in 2025: MSFT, IBM, QBTS, IONQ – October 2, 2025

October 3, 2025

A biological 0-day? Threat-screening tools may miss AI-designed proteins.

October 3, 2025
Leave A Reply

Latest Posts

Former ARTnews Publisher Dies at 97

National Gallery of Art Closes as a Result of Government Shutdown

Almine Rech Closes London Gallery After More Than a Decade

Record Exec and Art Collector Gets Over 4 Years

Latest Posts

Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models – Takara TLDR

October 5, 2025

VOGUE: Guiding Exploration with Visual Uncertainty Improves Multimodal Reasoning – Takara TLDR

October 5, 2025

Thinking Machines debuts Tinker, a developer tool to simplify fine-tuning of AI models | Technology News

October 5, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models – Takara TLDR
  • VOGUE: Guiding Exploration with Visual Uncertainty Improves Multimodal Reasoning – Takara TLDR
  • Thinking Machines debuts Tinker, a developer tool to simplify fine-tuning of AI models | Technology News
  • What to expect from free Perplexity AI Comet Browser: Enhanced multitasking?
  • TimeSeriesScientist: A General-Purpose AI Agent for Time Series Analysis – Takara TLDR

Recent Comments

  1. laligaaz on Sam Altman-backed Coco Robotics raises $80M
  2. laligaaz on MIT’s new tech enables robots to act in real time, plan thousands of moves in seconds
  3. laligaaz on Apple’s Lack Of New AI Features At WWDC Is ‘Startling,’ Expert Says – Apple (NASDAQ:AAPL)
  4. laligaaz on ChatGPT-4 competitor from China: DeepSeek V2 is open source
  5. Rodneyhat on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.