Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Ted Cruz AI bill could let firms bribe Trump to avoid safety laws, critics warn

AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning – Takara TLDR

China reportedly discouraged purchase of NVIDIA AI chips due to ‘insulting’ Lutnick statements

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
Meta AI Llama

Meta’s surprise Llama 4 drop exposes the gap between AI ambition and reality

By Advanced AI EditorApril 11, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Meta constructed the Llama 4 models using a mixture-of-experts (MoE) architecture, which is one way around the limitations of running huge AI models. Think of MoE like having a large team of specialized workers; instead of everyone working on every task, only the relevant specialists activate for a specific job.

For example, Llama 4 Maverick features a 400 billion parameter size, but only 17 billion of those parameters are active at once across one of 128 experts. Likewise, Scout features 109 billion total parameters, but only 17 billion are active at once across one of 16 experts. This design can reduce the computation needed to run the model, since smaller portions of neural network weights are active simultaneously.

Llama’s reality check arrives quickly

Current AI models have a relatively limited short-term memory. In AI, a context window acts somewhat in that fashion, determining how much information it can process simultaneously. AI language models like Llama typically process that memory as chunks of data called tokens, which can be whole words or fragments of longer words. Large context windows allow AI models to process longer documents, larger code bases, and longer conversations.

Despite Meta’s promotion of Llama 4 Scout’s 10 million token context window, developers have so far discovered that using even a fraction of that amount has proven challenging due to memory limitations. Willison reported on his blog that third-party services providing access, like Groq and Fireworks, limited Scout’s context to just 128,000 tokens. Another provider, Together AI, offered 328,000 tokens.

Evidence suggests accessing larger contexts requires immense resources. Willison pointed to Meta’s own example notebook (“build_with_llama_4”), which states that running a 1.4 million token context needs eight high-end Nvidia H100 GPUs.

Willison documented his own testing troubles. When he asked Llama 4 Scout via the OpenRouter service to summarize a long online discussion (around 20,000 tokens), the result wasn’t useful. He described the output as “complete junk output,” which devolved into repetitive loops.



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleThe Definition of Claude AI
Next Article Nvidia AI servers coming from Mexico could be partially exempt from Trump’s tariffs
Advanced AI Editor
  • Website

Related Posts

Larry Ellison Targets ‘Multi-Trillion-Dollar’ AI Inference Market For Oracle: ‘AI Will Change Everything’ – Oracle (NYSE:ORCL)

September 10, 2025

Meta Races to Launch Latest Llama AI Model by Year-End, Sources Say

September 8, 2025

Meta Code Llama AI tool for coding officially launches

September 5, 2025
Leave A Reply

Latest Posts

Sally Mann Says Her Black Men Photos Are ‘Problematic’ in Hindsight

National Gallery and Tate Have ‘Bad Blood’—and More Art News

Christie’s Will Auction The First Calculating Machine In History

The Art Market Isn’t Dying. The Way We Write About It Might Be.

Latest Posts

Ted Cruz AI bill could let firms bribe Trump to avoid safety laws, critics warn

September 11, 2025

AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning – Takara TLDR

September 11, 2025

China reportedly discouraged purchase of NVIDIA AI chips due to ‘insulting’ Lutnick statements

September 11, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Ted Cruz AI bill could let firms bribe Trump to avoid safety laws, critics warn
  • AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning – Takara TLDR
  • China reportedly discouraged purchase of NVIDIA AI chips due to ‘insulting’ Lutnick statements
  • Tool-space interference in the MCP era: Designing for agent compatibility at scale
  • Sally Mann Says Her Black Men Photos Are ‘Problematic’ in Hindsight

Recent Comments

  1. JamesMub on Anthropic’s popular Claude Code AI tool now included in its $20/month Pro plan
  2. Lamartex on Anthropic’s popular Claude Code AI tool now included in its $20/month Pro plan
  3. RichardBub on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  4. JamesMub on Nebius Stock Soars on $1B AI Funding, Analyst Sees 75% Upside
  5. Lamartex on Nebius Stock Soars on $1B AI Funding, Analyst Sees 75% Upside

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.