Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

The 30-Year Unicorn Backlog

Discovering Symbolic Models from Deep Learning with Inductive Biases (Paper Explained)

NVIDIA’s Stretchy Simulation: Super Quick! 🐘

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » [2502.08149] Generalized Class Discovery in Instance Segmentation
arXiv AI

[2502.08149] Generalized Class Discovery in Instance Segmentation

Advanced AI BotBy Advanced AI BotMay 12, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


[Submitted on 12 Feb 2025 (v1), last revised 8 May 2025 (this version, v2)]

View a PDF of the paper titled Generalized Class Discovery in Instance Segmentation, by Cuong Manh Hoang and Yeejin Lee and Byeongkeun Kang

View PDF
HTML (experimental)

Abstract:This work addresses the task of generalized class discovery (GCD) in instance segmentation. The goal is to discover novel classes and obtain a model capable of segmenting instances of both known and novel categories, given labeled and unlabeled data. Since the real world contains numerous objects with long-tailed distributions, the instance distribution for each class is inherently imbalanced. To address the imbalanced distributions, we propose an instance-wise temperature assignment (ITA) method for contrastive learning and class-wise reliability criteria for pseudo-labels. The ITA method relaxes instance discrimination for samples belonging to head classes to enhance GCD. The reliability criteria are to avoid excluding most pseudo-labels for tail classes when training an instance segmentation network using pseudo-labels from GCD. Additionally, we propose dynamically adjusting the criteria to leverage diverse samples in the early stages while relying only on reliable pseudo-labels in the later stages. We also introduce an efficient soft attention module to encode object-specific representations for GCD. Finally, we evaluate our proposed method by conducting experiments on two settings: COCO$_{half}$ + LVIS and LVIS + Visual Genome. The experimental results demonstrate that the proposed method outperforms previous state-of-the-art methods.

Submission history

From: Byeongkeun Kang [view email]
[v1]
Wed, 12 Feb 2025 06:26:05 UTC (1,905 KB)
[v2]
Thu, 8 May 2025 23:16:04 UTC (1,905 KB)



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleStanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation
Next Article OpenAI and Microsoft engage in tense negotiations over the future of their partnership
Advanced AI Bot
  • Website

Related Posts

Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation

May 12, 2025

A Domain-Agnostic Language for Automated Service Regulation

May 12, 2025

Cultural Russian-Oriented Dataset Adaptation for Focused Text-to-Image Generation

May 10, 2025
Leave A Reply Cancel Reply

Latest Posts

A Bold Symphony Of Love, Loss & Survival

Granddaughter Of Clarins Founder Lists London Home For $7.9 Million

A Heartwarming And Terrifying K-Drama

‘Questlove’ Explores His Austin ‘Happy Places’ With CNN

Latest Posts

The 30-Year Unicorn Backlog

May 12, 2025

Discovering Symbolic Models from Deep Learning with Inductive Biases (Paper Explained)

May 12, 2025

NVIDIA’s Stretchy Simulation: Super Quick! 🐘

May 12, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.