Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Adobe Firefly’s New AI Tool Generates Sound Effects from Voice and Text

New ARC-AGI-3 benchmark shows that humans still outperform LLMs at pretty basic thinking

MIT develops a motion and task planning system for home robots

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Industry AI
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
arXiv AI

[2411.02083] Regress, Don’t Guess — A Regression-like Loss on Number Tokens for Language Models

By Advanced AI EditorMay 27, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


[Submitted on 4 Nov 2024 (v1), last revised 25 May 2025 (this version, v2)]
Authors:Jonas Zausinger, Lars Pennig, Anamarija Kozina, Sean Sdahl, Julian Sikora, Adrian Dendorfer, Timofey Kuznetsov, Mohamad Hagog, Nina Wiedemann, Kacper Chlodny, Vincent Limbach, Anna Ketteler, Thorben Prein, Vishwa Mohan Singh, Michael Morris Danziger, Jannis Born

View a PDF of the paper titled Regress, Don’t Guess — A Regression-like Loss on Number Tokens for Language Models, by Jonas Zausinger and 15 other authors

View PDF
HTML (experimental)

Abstract:While language models have exceptional capabilities at text generation, they lack a natural inductive bias for emitting numbers and thus struggle in tasks involving quantitative reasoning, especially arithmetic. One fundamental limitation is the nature of the Cross Entropy loss, which assumes a nominal scale and thus cannot convey proximity between generated number tokens. In response, we here present a regression-like loss that operates purely on token level. Our proposed Number Token Loss (NTL) comes in two flavors and minimizes either the Lp norm or the Wasserstein distance between the numerical values of the real and predicted number tokens. NTL can easily be added to any language model and extend the Cross Entropy objective during training without runtime overhead. We evaluate the proposed scheme on various mathematical datasets and find that it consistently improves performance in math-related tasks. In a direct comparison on a regression task, we find that NTL can match the performance of a regression head, despite operating on token level. Finally, we scale NTL up to 3B parameter models and observe improved performance, demonstrating its potential for seamless integration into LLMs. We hope that this work can inspire LLM developers to improve their pretraining objectives. The code is available via: this https URL

Submission history

From: Jannis Born [view email]
[v1]
Mon, 4 Nov 2024 13:43:24 UTC (966 KB)
[v2]
Sun, 25 May 2025 21:13:23 UTC (5,219 KB)



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleAI makes us impotent
Next Article Google DeepMind develops AlphaEvolve AI agent optimized for coding and math
Advanced AI Editor
  • Website

Related Posts

LTLCrit: A Temporal Logic-based LLM Critic for Safe and Efficient Embodied Agents

July 8, 2025

From Imitation to Innovation: The Emergence of AI Unique Artistic Styles and the Challenge of Copyright Protection

July 8, 2025

VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots

July 8, 2025
Leave A Reply

Latest Posts

Sam Gilliam Foundation, David Kordansky Sued Over ‘Disavowed’ Painting

Donors Reportedly Pulling Support from Florida University Museum after its Controversial Transfer

What will come of the Guggenheim Asher legal battle?

Painter Says DHS Stole His Work for Post About ‘Homeland’s Heritage’

Latest Posts

Adobe Firefly’s New AI Tool Generates Sound Effects from Voice and Text

July 20, 2025

New ARC-AGI-3 benchmark shows that humans still outperform LLMs at pretty basic thinking

July 20, 2025

MIT develops a motion and task planning system for home robots

July 20, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • Adobe Firefly’s New AI Tool Generates Sound Effects from Voice and Text
  • New ARC-AGI-3 benchmark shows that humans still outperform LLMs at pretty basic thinking
  • MIT develops a motion and task planning system for home robots
  • Dig deeper in Google Search with AI Overview and three buttons
  • Perplexity AI plans to preload Comet browser on smartphones, challenging Google Chrome, Apple Safari dominance – Technology News

Recent Comments

  1. aviator game review on Former Tesla AI czar Andrej Karpathy coins ‘vibe coding’: Here’s what it means
  2. registro de Binance US on A Heuristic Algorithm Based on Beam Search and Iterated Local Search for the Maritime Inventory Routing Problem
  3. Наручные часы Ролекс Субмаринер приобрести on Orange County Museum of Art Discusses Merger with UC Irvine
  4. Best SEO Backlinks on From silicon to sentience: The legacy guiding AI’s next frontier and human cognitive migration
  5. Register on Paper page – Solve-Detect-Verify: Inference-Time Scaling with Flexible Generative Verifier

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.