Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

C3.AI DEADLINE FOR LEADERSHIP is October 21, 2025 in a Securities Fraud Lawsuit – Contact Kaplan Fox & Kilsheimer LLP

A^2Search: Ambiguity-Aware Question Answering with Reinforcement Learning – Takara TLDR

MIT president rejects proposal tying funding to Trump’s political agenda

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • OpenAI (GPT-4 / GPT-4o)
    • Anthropic (Claude 3)
    • Google DeepMind (Gemini)
    • Meta (LLaMA)
    • Cohere (Command R)
    • Amazon (Titan)
    • IBM (Watsonx)
    • Inflection AI (Pi)
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • AI Experts
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • The TechLead
    • Matt Wolfe AI
    • Andrew Ng
    • OpenAI
    • Expert Blogs
      • François Chollet
      • Gary Marcus
      • IBM
      • Jack Clark
      • Jeremy Howard
      • Melanie Mitchell
      • Andrew Ng
      • Andrej Karpathy
      • Sebastian Ruder
      • Rachel Thomas
      • IBM
  • AI Tools
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
  • AI Policy
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
  • Business AI
    • Advanced AI News Features
    • Finance AI
    • Healthcare AI
    • Education AI
    • Energy AI
    • Legal AI
LinkedIn Instagram YouTube Threads X (Twitter)
Advanced AI News
arXiv AI

[2411.00863] Next-Token Prediction Task Assumes Optimal Data Ordering for LLM Training in Proof Generation

By Advanced AI EditorJuly 4, 202513 Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


[Submitted on 30 Oct 2024 (v1), last revised 3 Jul 2025 (this version, v2)]
Authors:Chenyang An, Shima Imani, Feng Yao, Chengyu Dong, Ali Abbasi, Harsh Shrivastava, Samuel Buss, Jingbo Shang, Gayathri Mahalingam, Pramod Sharma, Maurice Diesendruck

View a PDF of the paper titled Next-Token Prediction Task Assumes Optimal Data Ordering for LLM Training in Proof Generation, by Chenyang An and 10 other authors

View PDF
HTML (experimental)

Abstract:In the field of large language model (LLM)-based proof generation, despite extensive training on large datasets such as ArXiv, LLMs still exhibit only modest performance on proving tasks of moderate difficulty. We believe that this is partly due to the widespread presence of suboptimal ordering within the data for each proof used in training. For example, published proofs often follow a purely logical order, where each step logically proceeds from the previous steps based on the deductive rules. This order is designed to facilitate the verification of the proof’s soundness, rather than to help people and models learn the discovery process of the proof. In proof generation, we argue that the optimal order for one training data sample occurs when the relevant intermediate supervision for a particular proof step in the proof is always positioned to the left of that proof step. We call such order the intuitively sequential order. We validate our claims using two tasks: intuitionistic propositional logic theorem-proving and digit multiplication. Our experiments verify the order effect and provide support for our explanations. We demonstrate that training is most effective when the proof is in the intuitively sequential order. Moreover, the order effect and the performance gap between models trained on different data orders can be substantial — with an 11 percent improvement in proof success rate observed in the propositional logic theorem-proving task, between models trained on the optimal order compared to the worst order. Lastly, we define a common type of order issue in advanced math proofs and find that 17.3 percent of theorems with nontrivial proofs in the first two chapters of a widely used graduate-level mathematics textbook suffer from this issue. A detailed list of those proofs is provided in the appendix.

Submission history

From: Chenyang An [view email]
[v1]
Wed, 30 Oct 2024 18:00:04 UTC (308 KB)
[v2]
Thu, 3 Jul 2025 15:14:51 UTC (271 KB)



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleTesla UK sales see 14% year-over-year rebound in June: SMMT
Next Article OpenAI Hits the Panic Button
Advanced AI Editor
  • Website

Related Posts

LTLCrit: A Temporal Logic-based LLM Critic for Safe and Efficient Embodied Agents

July 8, 2025

From Imitation to Innovation: The Emergence of AI Unique Artistic Styles and the Challenge of Copyright Protection

July 8, 2025

VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots

July 8, 2025

13 Comments

  1. cargo-ex-589 on September 7, 2025 1:59 am

    карго из китая в россию доставка карго

  2. russkoe-porno-408 on September 8, 2025 9:47 am

    русское порно бесплатно смотреть русское порно

  3. porno-903 on September 8, 2025 10:17 am

    Want to have fun? porno bangladesh melbet Watch porn, buy heroin or ecstasy. Pick up whores or buy marijuana. Come in, we’re waiting

  4. promocod-iherb-351 on September 8, 2025 10:42 am

    Новые актуальные промокод iherb для выгодных покупок! Скидки на витамины, БАДы, косметику и товары для здоровья. Экономьте до 30% на заказах, используйте проверенные купоны и наслаждайтесь выгодным шопингом.

  5. kursovaya-rabota-839 on September 13, 2025 10:29 am

    решение курсовых заказать курсовую в москве

  6. onlayn zaym 563 on September 13, 2025 11:04 am

    займ онлайн быстрый займ онлайн

  7. zaym onlayn 247 on September 13, 2025 12:06 pm

    займ на карту онлайн мгновенно займы онлайн на карту без проверок

  8. byuro-perevodov-642 on September 16, 2025 2:12 pm

    нотариус перевод документов услуги бюро переводов

  9. cocaine-prague-980 on September 20, 2025 7:51 pm

    buy drugs in prague cocaine prague

  10. cocaine-prague-18 on September 20, 2025 8:32 pm

    buy coke in telegram cocain in prague from columbia

  11. prague-cocaine-411 on September 21, 2025 10:35 am

    prague drugstore cocain in prague fishscale

  12. snow-market-18 on September 21, 2025 5:57 pm

    plug in prague cocain in prague from columbia

  13. joszaki-237 on September 30, 2025 12:33 am

    joszaki regisztracio https://joszaki.hu/

Leave A Reply

Latest Posts

The Rubin Names 2025 Art Prize, Research and Art Projects Grants

Kochi-Muziris Biennial Announces 66 Artists for December Exhibition

Instagram Launches ‘Rings’ Awards for Creators—With KAWS as a Judge

Museums Prepare to Close Their Doors as Government Shutdown Continues

Latest Posts

C3.AI DEADLINE FOR LEADERSHIP is October 21, 2025 in a Securities Fraud Lawsuit – Contact Kaplan Fox & Kilsheimer LLP

October 12, 2025

A^2Search: Ambiguity-Aware Question Answering with Reinforcement Learning – Takara TLDR

October 12, 2025

MIT president rejects proposal tying funding to Trump’s political agenda

October 12, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Recent Posts

  • C3.AI DEADLINE FOR LEADERSHIP is October 21, 2025 in a Securities Fraud Lawsuit – Contact Kaplan Fox & Kilsheimer LLP
  • A^2Search: Ambiguity-Aware Question Answering with Reinforcement Learning – Takara TLDR
  • MIT president rejects proposal tying funding to Trump’s political agenda
  • Learning on the Job: An Experience-Driven Self-Evolving Agent for Long-Horizon Tasks – Takara TLDR
  • Assessing Valuation After NVIDIA AI Partnership and Manufacturing Expansion

Recent Comments

  1. JungleEchoK2Nalay on Google DeepMind’s Demis Hassabis Wants to Build AI Email Assistant That Can Reply in Your Style: Report
  2. JungleEchoK2Nalay on 1-800-CHAT-GPT—12 Days of OpenAI: Day 10
  3. parifoot-611 on Marc Raibert: Boston Dynamics and the Future of Robotics | Lex Fridman Podcast #412
  4. beste app für wetten on C3.ai Stock Dips Following Palantir Technologies Earnings: What’s Going On? – C3.ai (NYSE:AI)
  5. https://plus.Chidaneh.com/ht-ft-wetten-2 on A Library of LLM Intrinsics for Retrieval-Augmented Generation

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

LinkedIn Instagram YouTube Threads X (Twitter)
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.