Close Menu
  • Home
  • AI Models
    • DeepSeek
    • xAI
    • OpenAI
    • Meta AI Llama
    • Google DeepMind
    • Amazon AWS AI
    • Microsoft AI
    • Anthropic (Claude)
    • NVIDIA AI
    • IBM WatsonX Granite 3.1
    • Adobe Sensi
    • Hugging Face
    • Alibaba Cloud (Qwen)
    • Baidu (ERNIE)
    • C3 AI
    • DataRobot
    • Mistral AI
    • Moonshot AI (Kimi)
    • Google Gemma
    • xAI
    • Stability AI
    • H20.ai
  • AI Research
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Microsoft Research
    • Meta AI Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Matt Wolfe AI
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Manufacturing AI
    • Media & Entertainment
    • Transportation AI
    • Education AI
    • Retail AI
    • Agriculture AI
    • Energy AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
What's Hot

Nebius Stock Soars on $1B AI Funding, Analyst Sees 75% Upside

AI disruption rises, VC optimism cools in H1 2025

Scale AI confirms ‘significant’ investment from Meta, says CEO Alexanr Wang is leaving

Facebook X (Twitter) Instagram
Advanced AI News
  • Home
  • AI Models
    • Adobe Sensi
    • Aleph Alpha
    • Alibaba Cloud (Qwen)
    • Amazon AWS AI
    • Anthropic (Claude)
    • Apple Core ML
    • Baidu (ERNIE)
    • ByteDance Doubao
    • C3 AI
    • Cohere
    • DataRobot
    • DeepSeek
  • AI Research & Breakthroughs
    • Allen Institue for AI
    • arXiv AI
    • Berkeley AI Research
    • CMU AI
    • Google Research
    • Meta AI Research
    • Microsoft Research
    • OpenAI Research
    • Stanford HAI
    • MIT CSAIL
    • Harvard AI
  • AI Funding & Startups
    • AI Funding Database
    • CBInsights AI
    • Crunchbase AI
    • Data Robot Blog
    • TechCrunch AI
    • VentureBeat AI
    • The Information AI
    • Sifted AI
    • WIRED AI
    • Fortune AI
    • PitchBook
    • TechRepublic
    • SiliconANGLE – Big Data
    • MIT News
    • Data Robot Blog
  • Expert Insights & Videos
    • Google DeepMind
    • Lex Fridman
    • Meta AI Llama
    • Yannic Kilcher
    • Two Minute Papers
    • AI Explained
    • TheAIEdge
    • Matt Wolfe AI
    • The TechLead
    • Andrew Ng
    • OpenAI
  • Expert Blogs
    • François Chollet
    • Gary Marcus
    • IBM
    • Jack Clark
    • Jeremy Howard
    • Melanie Mitchell
    • Andrew Ng
    • Andrej Karpathy
    • Sebastian Ruder
    • Rachel Thomas
    • IBM
  • AI Policy & Ethics
    • ACLU AI
    • AI Now Institute
    • Center for AI Safety
    • EFF AI
    • European Commission AI
    • Partnership on AI
    • Stanford HAI Policy
    • Mozilla Foundation AI
    • Future of Life Institute
    • Center for AI Safety
    • World Economic Forum AI
  • AI Tools & Product Releases
    • AI Assistants
    • AI for Recruitment
    • AI Search
    • Coding Assistants
    • Customer Service AI
    • Image Generation
    • Video Generation
    • Writing Tools
    • AI for Recruitment
    • Voice/Audio Generation
  • Industry Applications
    • Education AI
    • Energy AI
    • Finance AI
    • Healthcare AI
    • Legal AI
    • Media & Entertainment
    • Transportation AI
    • Manufacturing AI
    • Retail AI
    • Agriculture AI
  • AI Art & Entertainment
    • AI Art News Blog
    • Artvy Blog » AI Art Blog
    • Weird Wonderful AI Art Blog
    • The Chainsaw » AI Art
    • Artvy Blog » AI Art Blog
Advanced AI News
Home » [2201.05745] Deep Optimal Transport for Domain Adaptation on SPD Manifolds
arXiv AI

[2201.05745] Deep Optimal Transport for Domain Adaptation on SPD Manifolds

Advanced AI BotBy Advanced AI BotApril 28, 2025No Comments2 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


[Submitted on 15 Jan 2022 (v1), last revised 25 Apr 2025 (this version, v5)]

View a PDF of the paper titled Deep Optimal Transport for Domain Adaptation on SPD Manifolds, by Ce Ju and Cuntai Guan

View PDF
HTML (experimental)

Abstract:Recent progress in geometric deep learning has drawn increasing attention from the machine learning community toward domain adaptation on symmetric positive definite (SPD) manifolds, especially for neuroimaging data that often suffer from distribution shifts across sessions. These data, typically represented as covariance matrices of brain signals, inherently lie on SPD manifolds due to their symmetry and positive definiteness. However, conventional domain adaptation methods often overlook this geometric structure when applied directly to covariance matrices, which can result in suboptimal performance. To address this issue, we introduce a new geometric deep learning framework that combines optimal transport theory with the geometry of SPD manifolds. Our approach aligns data distributions while respecting the manifold structure, effectively reducing both marginal and conditional discrepancies. We validate our method on three cross-session brain computer interface datasets, KU, BNCI2014001, and BNCI2015001, where it consistently outperforms baseline approaches while maintaining the intrinsic geometry of the data. We also provide quantitative results and visualizations to better illustrate the behavior of the learned embeddings.

Submission history

From: Ce Ju [view email]
[v1]
Sat, 15 Jan 2022 03:13:02 UTC (7,687 KB)
[v2]
Thu, 2 Jun 2022 03:43:34 UTC (7,214 KB)
[v3]
Fri, 7 Jul 2023 08:14:38 UTC (1,187 KB)
[v4]
Mon, 3 Jun 2024 08:51:23 UTC (1,583 KB)
[v5]
Fri, 25 Apr 2025 09:58:22 UTC (1,076 KB)



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleStanford HAI’s 2025 AI Index Reveals Record Growth in AI Capabilities, Investment, and Regulation
Next Article Neuralink’s third brain chip patient shares first video edited with BCI
Advanced AI Bot
  • Website

Related Posts

Decentralized Content Rights in the Age of Generative AI

June 13, 2025

From Seeing to Understanding to Reasoning in Vision-Language Models

June 13, 2025

[2409.07507] Traceable LLM-based validation of statements in knowledge graphs

June 13, 2025
Leave A Reply Cancel Reply

Latest Posts

Enchanting El Museo Del Barrio Gala Honors Late Artist And Arts Patron Tony Bechara

Wellness Design Is Booming—Rakxa In Bangkok Shows How To Bring It Home

Two Men Found Guilty for Forging and Selling Fake Royal Armchairs

This Times Square Tropical Paradise Unveils Theatrical New Menu

Latest Posts

Nebius Stock Soars on $1B AI Funding, Analyst Sees 75% Upside

June 13, 2025

AI disruption rises, VC optimism cools in H1 2025

June 13, 2025

Scale AI confirms ‘significant’ investment from Meta, says CEO Alexanr Wang is leaving

June 13, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Advanced AI News—your ultimate destination for the latest advancements, insights, and breakthroughs in artificial intelligence.

At Advanced AI News, we are passionate about keeping you informed on the cutting edge of AI technology, from groundbreaking research to emerging startups, expert insights, and real-world applications. Our mission is to deliver high-quality, up-to-date, and insightful content that empowers AI enthusiasts, professionals, and businesses to stay ahead in this fast-evolving field.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

YouTube LinkedIn
  • Home
  • About Us
  • Advertise With Us
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 advancedainews. Designed by advancedainews.

Type above and press Enter to search. Press Esc to cancel.